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REFLECTION OF A PLANE LONGITUDINAL SHOCK WAVE OF CONSTANT INTENSITY 

FROM A PLANE RIGID BOUNDARY WITH A NONLINEAR ELASTIC MEDIUM 

A. A. Burenin and V. V. Lapygin UDC 539.3 

A consequence of the second law of thermodynamics in gasdynamics is the well-known theo- 
rem of Cemplen on the existence of only compressional shock waves. Ths system of differen- 
tial equations of gasdynamics has the property that they lead to solutions consistent with 
this theorem. With certain additional conditions, a similar situations occurs for quasi- 
longitudinal (bulk) shock waves in an elastic medium. In particular, in the formulation of 
self-modeling problems in the nonlinear dynamical theory of elasticity [1], one can often 
prove a priori that the leading front of bulk deformations propagating in the elastic medium 
is either a shock wave or a centralized wave depending on whether the introduced perturba- 
tions lead to compression or expansion of the medium. Another case is that of quasitrans- 
verse (shear) shock waves. We note that [2] a purely transverse shock wave, leading only 
to shear without a change in volume, can exist in a nonlinear elastic medium only for a par- 
ticular deformed state in front of the surface of discontinuity. This means that a shear 
shock wave will always simultaneously be a compressional wave. It was shown in [2] that in 
this case- the bulk deformations are of second order in comparison with shear deformations 
and for real materials they lead to an expansion of the medium. On the other hand, in [3] 
the self-modeling problem on the pure shear of an elastic half-space was considered, and it 
was shown that a centralizer shear wave also leads to expansion, for the same properties of 
the elastic medium. Therefore, one can obtain two solutions of the same self-modeling prob- 
lem Of the nonlinear dynamical theory of elasticity depending on the formulation of the prob- 
lem. Self-modeling dynamical problems of the nonlinear theory of elasticity were considered 
in [1, 3-5] and shock waves in an elastic medium in [2, 6, 7]. 

In the present paper we formulate and present the numerical results of the self-modeling 
problem of the nonlinear dynamical theory of elasticity for the reflection of a plane longi- 
tudinal shock wave of constant intensity from a plane rigid boundary with an elastic medium. 
It is shown that for angles of incidence of the original shock wave which are less than a 
certain critical value (which depends on the wave intensity) two solutions of the problem are 
possible: a reflected quasitransverse shock wave or a centralized shear wave. For angles of 

incidence exceeding the critical value, the solution exists only for the reflected shock wave. 
The leading front of the bulk de~ormations is caused by the reflection of the shock wave from 
the rigid barrier and is a quasitransverse shock wave. 

I. The system of equations describing the dynamical deformation of an elastic medium 
in a rectangular coordinate system in terms of the Euler variables has the form [8, 9] 
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9 OW dvi 
cO : t)a ~)"i~ ('Sl'i - -  2%]), c~i,i,J --- P dt ' 

v i = Oui/i)l -J- vju~,j, 2e~} = ui, j qt u],i _ _  t~h,i~lk,~" 
( 4 z/ . S ) t';2 

9/90= 1- -21~§  :-'~) I~-'7-~ ~I.,.--7. [:~ , 

1~ =- e l i ,  [2 =~ e i j e j i ,  [:~ = =  ei je j t~ fh~"  

(1.1) 

u~ = x~u((), u2 = xlv((), ( (x2 -- st)/xl, it follows from (1.1) 

A i u " §  A ~ ' = = 0 ,  A u" a § A4v"=  0, 

where 

In the expansion of the elastic potential W(Iz, 12, I3) in a Taylor series with respect 
to the free state, we limit the expansion to terms of not higher than the third order in the 
deformation gradient tensor ui,j. That is, we assume 

! 
W =-~- &f,,~2t,/+, = § 2 4 7  ~ . ,  . (1 . 2 )  

We s h a l l  c o n s i d e r  the case of  p lane d e f o r m a t i o n s .  Then i f  we i n t r o d u c e  the v a r i a b l e s  
and (1 .2 )  t h a t  

~2 . ~ o , 

a o . -  = : %  ~ ( %  ~ %), , ,  

= ' = ~ 3 ( 2 - V , ) + ~  ' , ,  ~.~), a~ ~ 2 ( 7 , _ 2 ) _ 2 7 ~ @ T a §  a2 (-~ .~ --  274 -- ' 

~} = - ~, (~ + 2 h  + %),  ~ -= ~ (~ ~ = ~ + 2 h  + h )  4- h - ~ ~ + T, 

. a 2 ~ ~ (72 -- 2y6 § 274 -- ?~ + t) § 74 § ?a -- T, 

~ = ?~ ( ~  + l) ,  ~ } =  - ~ , q  + [2 ( h  + ?~, - ?4) - h - q ,  

a ~ = ~ 2 ( ? { § 2 4 7  §  a~=- -~a (?  4§247 §  

- ~,. - ~  + r ) , . . ~  = ~' (?4 - -  h )  - -  2 + ?~ + 3r .  

"~ = - -  ~ (?4 - -  %) + ~ 0 - -  2 h  - -  h - -  h - -  r ) , ,  ~ = - -  ~ ( ~  + h ) '  

1 

4 2 - -  2 
% = ~  (2? 4 27a 4- TJ + ?, --  2, T = } / 6 ~ ,  G o = [ ( X + % 0 / 0 o l ,  

6(l 4- m + n) 6m-- 2l -- 3X # 
? t - -  )~+2~: - -7 ,  Y2-- ~.§ , 7~-- X@2b'" 

(1 .3 )  

3 
Z + y n  

Let a plane shock wave [i of constant intensity T propagating in an undeformed elastic 
medium be incident at a certain angle ~l on a plane rigid barrier L (Fig. I). We show that 
this problem can be solved using the self-m0deling variable ~. We put s = GI sinai, where 
G1 is the velocity of the shear wave. Then the position of the shear wave is determined 
by the value of the parameter ~ = ~i = cot ~i = const, so that all of the boundary conditions 
of the problem are specified on the half-planes ~ = const. Therefore the problem can be 
solved in the framework of the self-modeling parameter. 

It follows from (1.3) that the solution of the system of equations is trivial (u' = 
const, v' = const) if its determinant AIA~ -- A2A3 ~ 0. The determinant can vanish for cer- 
tain values of ~ which characterize the position of the reflected shock wave or in the in- 
terval of ~ corresponding to a reflected centralizer wave. 

The presence of the rigid barrier causes a further compression of the medium. Pertur- 
bations leading to compression of the medium will propagate because of the reflected quasi- 
longitudinal shock wave Z2 (~ = ~2) [2, 3, 7]; this picture is supported by the numerical 
calculations to be presented below. Additional shear deformations propagate in the medium 
only as a result of the reflected quasitransverse shock wave (~3 = ~) or the reflected cen- 
tralized wave (the region between ~3 and ~4). It is shown below that depending on the ini- 
tial parameters ~l and ~, two cases can occur. In the regions corresponding to the trivial 

(region 2), between ~4 and L (region solution between ~1(and ~2 (region i), between ~2 and 13 I gives the number of the 
4) one can assume u i) = ai ~ + bi ' v(i) = ci~ + d i (i , 2, 3, 4 
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region). Then 

"UiJ).---~ -- i -- b i -- C~-- a~d~ ~- b,ic, ~ ' ( I .4) 

q -- b~c~ 27 afli 
v(2~) - -  - s 1 - -  b i - -  q - -  a i d  ~ 27 b i q  ' 

where ai, bi, c i, d i are dimensionless constants. The stress and deformation will also be 
constants and can be calculated in terms of ui, j using (1.1) and (I .2). 

2. The dynamical and kinematic conditions of compatibility on the shock wave discon- 
tinuity are written in the form [10] 

I%] "j : ~+ (~$ - a)  i ~ / ,  [j] = p - I - ,  ( 2 . 1 )  
[,'d = ",+j ["A + ( ' q  - a ) ' q ,  ["~,J] = "q"J" 

Here the plus and minus signs mean that the quantity in question is calculated in front 
of the shock wave and directly behind it, respectively, vj is the unit normal to the surface 
of discontinuity, and G is the velocity of the shock wave. Because we assume that El has a 
constant intensity z, applying (2.1) to 21 gives 

a 1 = d I = "~ sin ~-1 cos al ,  b, := - - x  cos  ~ ~ j ,  q = - - T  s in  ~ a l ,  ( 2 . 2 )  

9 l -6  m -R n 
G 1 = G o ( I - - n T ) ~ / e '  •  273 2o.4-2~t ' x = ' ~ v i .  

The relations (2.2) determine all of the parameters of the deformed state in region I 
in terms of the known values of 7: and ~I. 

The continuity condition of the displacement on the shock wave E2 has the form 

(a~- -a , )~ ,27  b~--  t,~:-= O, ( q - - c ~ ) ~  [ d~--d~:=- O. ( 2 . 3 )  

The conservation of momentum (2. I) on 22 leads to the equations 

(,,~,;~- '~" , ,~ ' ) -  or::;: / c' ~ (~,, ~,, + ~,~o~ o,,) 
- -  a ' a - a ) ~ 2 7  ,-,,z (127x) t a  o t 2 7 ~  \ ~ - -  s 7 '  ( 2 . 4 )  

t o - )  .~)~-- ,~,(,? ~ ) = ( t + ~ ) I a ' - - - ! -  ~ - - t  ~a --  ~1r q- ~ - -  ~2 / G  ~ i + T ( s i n a l - 6 ~ c o s a ~ )  G0 G o "  

I n  ( 2 . 4 )  ok(~ ) a r e  d i m e n s i o n l e s s  s t r e s s e s  c o r r e s p o n d i n g  t o  k + 2 ~ .  We a s s u m e  t h a t  ~z i s  
k n o w n ,  t h e n  ( 2 . 3 )  a n d  ( 2 . 4 )  f o r m  a s y s t e m  o f  f o u r  n o n l i n e a r  a l g e b r a i c  e q u a t i o n s  f o r  a 2 ,  b 2 ,  
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(2) (2) 
c2~ di. We assume that oij and v i can be expressed in terms of ~2, hi, c2, d2 according 

to (1.1), (1.2), and (1.4). Hence in region 2 the solution can be found as a function of the 

parameter ~2. In the case when the reflected shear excitations propagate in the medium be- 
cause of a reflected centralized wave (~3 > ~) the formulation of the solution of (2.3) and 

(2.4) in terms of the equation 

AtA4 - -  A2A:I : :O (2.5) 

gives ~2 for a given ~3. The solution in the region between ~3 and ~ is found by solving 

the Cauchy problem for the system of differential equations (2.5) and one of Eqs. (1.3). The 

boundary conditions for the Cauchy problem have the form 

We consider the solution of the Cauchy problem when u' and v' are zero. By varying ~2 

one can get u' and v' equal to zero simultaneously. This case corresponds to the boundary 

conditions u = v = 0 on L. 

If the leading front of the reflected shear excitations is a quasitransverse shock wave 

(~3 = ~), then the continuity condition of the displacement and the conservation of momentum 

on the shock are written from (2.1) in the form 

.... b3 t  I - -- t ]  / O f ) ,  

' z, ('~) s'l r(~)/G z 
- -  ~ t ' 2 t  - -  t ' 2 1  ] ~ : l  I 2 2  2 2  - -  . 

(2.6) 

~) 
In (2.6) the boundary conditions ~4 = c~ = v~ ~) = v = 0 are taken into account, and 

the density in region 2 is calculated according to the equation of continuity from (1.1). If 
in (2.4) and (2.6) we take into account (1.4) and (2.2), and also that G2 = Gl{(1 + coti~1)/ 

(I + ~2)i/2, then we obtain a system of eight nonlinear algebraic equations for ~2, ~3 = ~, 

ai, hi, C2, di, ha, d4. 

We note that it is not possible to determine in advance if the reflected shear excita- 

tions are propagated in the medium because of a shock or centralized wave. 

3. Numerical calculations were carried out on the basis of the discussion given above. 

The parameters in the problem were varied in the range 5 ~ <~ ~l ~< 60 ~ , which corresponds to 

11.43 >/ ~ >/ 0.577 and 0.1 i> T >i 0.01. The elastic constants were chosen in the form [11] 

%/(X + 2~) = 0.374, M/(% + 2M) = 0.313, I/(% + 2~) = --I .24, m/(% + 2M) = --0.412, n/(% + 2M) = 

-0.663. 

The basic qualitative results of the calculations are: If ~l varies between 5 ~ and a,, 

where ~, depends on T and the constants of the material, then solutions with a reflected 

quasitransverse shock wave and a reflected centralized wave are both possible. When ~l > ~*, 
the solution is only found with a reflected quasitransverse shock wave. The limiting value 
~l = ~* decreases with increasing �9 ; when T := 0,01 ~, ~= 0,936(a. ~ 46,9") , when �9 = 0,03 ~. := 1,014(~. == 

44.6 ~ ), for ~== 0,05 .~, = 1,208 (~, := 3,9,6~). Hence the solution of the problem is not unique when 

~l < ~*- We discuss a typical result of the calculations for el = 30 ~ , T = 0.05. ~r we 
have reflection of a quasitransverse shock wave, ~ ~- 31.85 ~ ~) = -- 04344, ~(") = 0,00?2, ~!,~) ~= -- 0,0745, 

�9 - u12 zz 

~,(2)/G -~--O.O06.q,  r(~)/G ~ = 0,i)509, o(2),% = t ,0883,  cq ~ a~ = t6,30 o (~.~ = ~a), uJr--(4) . . . . .  - 0 . t53 ,  o~4, )_ : =  0,u467, u,.,.. 
I / 0 ' - 

--0.0576,9 i:')/p0= 1,0777 If the reflected shear excitations propagate because of a centralized 

= % ~ =~ -- 0 ,t266, : =  0 ,()092, wave, then these parameters will have the following values: a2 31,5% (~) o~ ) 

O~ 2) = ;  - -  0 , ( ' 7 0 ~ ,  t:~)/G D == - - O , O t ' | / ~ ,  I,,~:2)/G~l. == 0 0 4 8 3 .  ~0(2)/'0o = 1,0845, aa "=: t7.34 '~, ~a = 15, 72~ ott(a)---- - -0, t .524,  a(~) = 

0 . 0 4 5 0  , ~ )  = - - 0 , 0 5 7 4 ,  P(~)/Po ~= t ,0784.  

For ~ < %~., when the intensity �9 of the incident shock wave increases, ~2 increases and 
we always have ~2 > ~. The stress in the region 2 increases sharply with increasing ~; for 

example, when ~1 = 30~ ~ = 0,01 o~ 2)=~ --0,0167, 0(~2)~.= 0,0009, ~.~n (2)== --0,0102, p(2)/p0:= 1.0172, for �9 = 0.05 the 

values of the dimensionless stresses (corresponding to ~ + 2M) and the relative densities are 
as given above. The numerical results show that in all cases reflection of a quasilongitudi- 
nal shock wave (~ = ~2) is a wave of compression p(2)/p0 > I. The centralized wave leads to 

an expansion of the medium @(~)/@(2) < I. In region 3 of the centralized wave, the functions 

oij , vi, P/P0 are monotonic (Fig. 2 where �9 = 0.05, ~l = 1.732, ~2 =--1.632, ~3 = --3.248, 
~ =--3.618). In this case the relative density decreases, v~/G0 increases and remains 
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negative, v2/G0 decreases, the stresses oIL and o12 increase in absolute value, and 022 de- 
creases. The width of the centralized wave h = I~3 -- r increases with increasing intensity 
T of the incident shock wave; for example, when ~l = 30 ~ and �9 = 0.01, h = 0.05; when T = 
0.05, h =0.33. As the angle of incidence ~l of the shock wave increases, the width of the 
centralized wave increases from h = 0.004 (~i = 15 ~ ) to h = 0.06 (ml = 45 ~ ) for T = 0.01. 

If mL > a,, the solution of the problem (as noted above) simplifies and is found by 
solving eight nonlinear algebraic equations. The calculation shows that Z2 is always a quasi- 
longitudinal compressional shock wave, the quasitransverse shock wave (~ = ~3 = ~4) in all 
cases leads to an expansion of the medium; this has also been noted in the theoretical treat- 
ments [2]. We show typical numerical results for the change in the position of the reflected 
shock wave as a function of the change in the intensity of the incident wave (ml = 60~ 

~ OJH a~ ~ 61).I0~ ~ ~ - - a r c l g ~ - ~  ~ 29 .02~  

i =  0_03 g~ = 6 2 , 2 7  ~ a s =  2 8 . 8 4 ~  

= 0 , 0 5  a 2 - =  72 ,00? ,  ~:3 = 28: 83~ 

We did not consider the case az > 60 ~ in the calculations since irregular reflection is 
possible for large values of ml. 
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